Tytuł pozycji:
Characteristic of Mg-Al-Zn alloys after laser treatment
Purpose: The structure and the properties of casting magnesium alloy EN-MCMgAl3Zn1, EN-MCMgAl6Zn1, EN-MCMgAl9Zn1 and EN-MCMgAl12Zn1 after laser surface treatment are presented in this paper. The aim of this work was to improve the surface layer cast magnesium Mg-Al-Zn by melting and feeding of TiC particle on the surface. The purpose of this work was to determine the laser treatment parameter. Design/methodology/approach: The experiments were performed using high power diode laser. The laser treatment of an EN-MCMgAl3Zn1, EN-MCMgAl6Zn1, EN-MCMgAl9Zn1, EN-MCMgAl12Zn1 magnesium alloy with alloying TiC powders was carried out using a high power diode laser (HPDL). The resulting microstructure in the modified surface layer was examinated using scanning electron microscopy. Phase composition was determined by the X-ray diffraction method using the XPert device. The measurements of hardness of the modified surface layer was also studied. Findings: The alloyed region has a fine microstructure with hard carbide particles. Hardness of laser surface alloyed layer with TiC particles was significantly improved as compared to alloy without laser treatment for EN-MCMgAl3Zn1 and EN-MCMgAl6Zn1 alloys. Research limitations/implications: In this research one powder - TiC was used with the particle size over 6 µm. This investigation presents different speed rates feed and different laser power value for four type of magnesium alloys. Practical implications: The results obtained in this investigation were promising compared to other conventional processes. High Power Diode Laser can be used as an economical substitute of Nd:YAG and CO2 to improve the surface magnesium alloy by feeding the carbide particles. Originality/value: The originality of this work is applying of High Power Diode Laser for alloying of magnesium alloy using titanium carbide.