Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

An effective iris segmentation scheme for noisy images

Tytuł:
An effective iris segmentation scheme for noisy images
Autorzy:
Jan, Farmanullah
Min-Allah, Nasro
Data publikacji:
2020
Słowa kluczowe:
iris biometrics
pupil localization
iris localization
iris segmentation
biometryka tęczówki
lokalizacja tęczówki
segmentacja tęczówki
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Iris segmentation plays a critical role in the iris biometric systems. It has two modules: iris localization and noise detection. The first module demarcates the actual iris' inner and outer boundaries in input eyeimages. The second module detects and removes noise in the valid iris part. Researchers devised numerous iris segmentation and/or localization schemes, which are based on the histogram and thresholding, circular Hough transform (CHT), Integro-differential operator (IDO), active contour models, graph-cuts, or deep learning. It is observed that most contemporary schemes perform poorly when confronted with images containing noisy factors such as the eyebrows, eyelashes, contact lenses, non-uniform illumination, light reflections, defocus and/or eyeglasses. The performance of CHT and IDO against noise is found robust, but these operators are computationally expensive. On the other hand, the histogram and thresholding-based schemes are considered fast, but these are less robust against noise. Besides, most contemporary schemes mark iris contours with a circle approximation and offer no noise removal strategy. To address these issues, this study offers an effective iris segmentation algorithm. First, it applies an optimized coarse-to-fine scheme based on an adaptive threshold to mark iris inner boundary. Next, it detects and marks eyelashes adaptively. After that, it marks iris outer boundary via an optimized coarse- to-fine scheme. Then, it regularizes the non-circular iris' contours using the Fourier series. Finally, eyelids and reflections are marked in the iris polar form. The proposed scheme shows better results on the CASIA-Iris-Interval V3.0, IITD V1.0, and MMU V1.0 iris databases.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies