Tytuł pozycji:
Abnormal Breast Detection in Mammogram Images by Feed-forward Neural Network Trained by Jaya Algorithm
(Aim) Abnormal breast can be diagnosed using the digital mammography. Traditional manual interpretation method cannot yield high accuracy. (Method) In this study, we proposed a novel computer-aided diagnosis system for detecting abnormal breasts in mammogram images. First, we segmented the region-of-interest. Next, the weighted-type fractional Fourier transform (WFRFT) was employed to obtain the unified time-frequency spectrum. Third, principal component analysis (PCA) was introduced and used to reduce the spectrum to only 18 principal components. Fourth, feed-forward neural network (FNN) was utilized to generate the classifier. Finally, a novel algorithm-specific parameter free approach, Jaya, was employed to train the classifier. (Results) Our proposed WFRFT + PCA + Jaya-FNN achieved sensitivity of 92.26% ± 3.44%, specificity of 92.28% ± 3.58%, and accuracy of 92.27% ± 3.49%. (Conclusions) The proposed CAD system is effective in detecting abnormal breasts and performs better than 5 state-of-the-art systems. Besides, Jaya is more effective in training FNN than BP, MBP, GA, SA, and PSO.