Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Novel hybrid approaches based on evolutionary strategy for streamfow forecasting in the Chellif River, Algeria

In this study, the feedforward neural networks (FFNNs) were proposed to forecast the multi-day-ahead streamfow. The parameters of FFNNs model were optimized utilizing genetic algorithm (GA). Moreover, discrete wavelet transform was utilized to enhance the accuracy of FFNNs model’s forecasting. Therefore, the wavelet-based feedforward neural networks (WFFNNs-GA) model was developed for the multi-day-ahead streamfow forecasting based on three evolutionary strategies [i.e., multi-input multi-output (MIMO), multi-input single-output (MISO), and multi-input several multi-output (MISMO)]. In addition, the developed models were evaluated utilizing fve diferent statistical indices including root mean squared error, signal-to-noise ratio, correlation coefcient, Nash–Sutclife efciency, and peak fow criteria. Results provided that the statistical values of WFFNNs-GA model based on MISMO evolutionary strategy were superior to those of WFFNNs-GA model based on MISO and MIMO evolutionary strategies for the multi-day-ahead streamfow forecasting. Results indicated that the performance of WFFNNs-GA model based on MISMO evolutionary strategy provided the best accuracy. Results also explained that the hybrid model suggested better performance compared with stand-alone model based on the corresponding evolutionary strategies. Therefore, the hybrid model can be an efcient and robust implement to forecast the multi-day-ahead streamfow in the Chellif River, Algeria.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies