Tytuł pozycji:
Selected mechanical properties and microstructure of Al2O3ZrO2nano ceramic composites
Purpose: Basic mechanical properties of the studied tool materials and microstructure of alumina-zirconia ceramic composites with fraction of nanopowders have been presented. Design/methodology/approach: The present study reports selected properties obtained by reinforcing Al2O3 with 15 wt% ZrO2 (partially stabilized with Y2O3-Y5) and, non-stabilized zirconia. Specimens were prepared based on submicro- and nano-scale trade powders. Vickers hardness (HV1), wear resistance and fracture toughness (KIC) at room and elevated temperatures characteristic for tool work were evaluated. Microstructure was observed by means of a scanning electron microscopy (SEM). Preliminary industrial cutting tests in the turning of higher-quality carbon steel C45 grade were carried out. Findings: The addition of nanopowders does not result in a significant improvement in fracture toughness at room temperature. A reduction in fracture toughness of KIC(ET) by approximately 20% is observed at elevated temperature (1073 K) for the specimen only with submicro powders in comparison to that at room temperature. Addition of the powder mixture in submicron and nano scale size reveals the minor reduction of fracture toughness (up to 10%) at elevated temperature. Practical implications: The results show that using of powders in submicron and nano scale size not improve the tool life but influences the fracture toughness et elevated temperatures. Originality/value: The results of the presented investigations allow rational use of existing ceramic tools.