Tytuł pozycji:
Manufacturing of EN AW6061 matrix composites reinforced by halloysite nanotubes
Purpose: The core of the work consists in the elaboration of composite materials of aluminium alloy matrix, manufactured with the use of powder metallurgy technologies, including mechanical milling and hot extrusion and in determining the influence of the share of halloysite nanotubes - as the reinforcing phase on the structure and mechanical properties of fabricated composites. Design/methodology/approach: Mechanical milling and hot extrusion are considering as a method for fabricating composite metal powders with a controlled fine microstructure. It is possible by the repeated fracturing and re-welding of powders particles mixture in a highly energetic ball mill. Findings: It has been confirmed that halloysite nanotubes can be applied as a effective reinforcement in the aluminium matrix composites. High energy ball milling as a method of mechanical milling improves the distribution of the halloysite reinforcing particles throughout the aluminium matrix, simultaneously reducing the size of particles. Research limitations/implications: Contributes to research on structure and properties of aluminium alloy matrix composite material reinforced with mineral nanoparticles. Practical implications: The apparent density changes versus milling time can be used to control the composite powders production by mechanical milling and the presence of halloysite reinforcements particles accelerates the mechanical milling process. Conducted research shows that applied technology of composite materials production allows to obtain very good microstructural characteristics. Originality/value: The application of halloysite nanotubes as the reinforcing phase of metal composite materials is a novel assumption of the discussed work and an interesting challenge whereof realization would enable to use this mineral clay in an innovative and cost effective way.