Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Two-step reinforcement learning for multistage strategy card game

Tytuł:
Two-step reinforcement learning for multistage strategy card game
Autorzy:
Godlewski, Konrad
Sawicki, Bartosz
Data publikacji:
2024
Słowa kluczowe:
reinforcement learning
incremental learning
card games
gry karciane
uczenie przyrostowe
uczenie wzmacniające
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
This study introduces a two-step reinforcement learning (RL) strategy tailored for "The Lord of the Rings: The Card Game", a complex multistage strategy card game. The research diverges from conventional RL methods by adopting a phased learning approach, beginning with a foundational learning step in a simplified version of the game and subsequently progressing to the complete, intricate game environment. This methodology notably enhances the AI agent’s adaptability and performance in the face of the unpredictable and challenging nature of the game. The paper also explores a multi-phase system where distinct RL agents are employed for various decision-making phases of the game. This approach has demonstrated remarkable improvement, with the RL agents achieving a winrate of 78.5 % at the highest difficulty level.
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies