Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Epileptic seizure detection based on improved wavelet neural networks in long-term intracranial EEG

Tytuł:
Epileptic seizure detection based on improved wavelet neural networks in long-term intracranial EEG
Autorzy:
Geng, D.
Zhou, W.
Zhang, Y.
Geng, S.
Data publikacji:
2016
Słowa kluczowe:
seizure detection
EEG signal
modified point symmetry-based fuzzy c-means
wavelet neural network
wykrywanie napadu
sygnał EEG
sieć falkowo-neuronowa
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Automatic seizure detection is of great importance for speeding up the inspection process and relieving the workload of medical staff in the analysis of EEG recordings. In this study, a method based on an improved wavelet neural network (WNN) is proposed for automatic seizure detection in long-term intracranial EEG. WNN combines the traditional back propagation neural network (BPNN) with wavelet transform. Compared with classic WNN architectures, a modified point symmetry-based fuzzy c-means (MSFCM) algorithm is applied to the initialization of wavelet transform's translations, which has been successful in multiclass cancer classification. In addition, Fast-decaying Morlet wavelet is chosen as the activation function to make the WNN learn faster. Relative amplitude and relative fluctuation index are extracted as a feature vector to describe the variation of EEG signals, and the feature vector is then fed into WNN for classification. At last, post-processing including smoothing, channel fusion and collar technique is adopted to achieve more accurate and stable results. This system performs efficiently with the average sensitivity of 96.72%, specificity of 98.91% and false-detection rate of 0.27 h_1. The proposed approach achieves high sensitivity and low false detection rate, which demonstrates its potential for clinical usage.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies