Tytuł pozycji:
Bounds for E׀Sn׀Q for subordinated linear processes with application to M-estimation
Let Xj =Σ∞r=0 ArZj−r be a one-sided m-dimensional linear process, where (Zn) is a sequence of i.i.d. random vectors with zero mean and finite covariance matrix. The aim of this paper is to prove the moment inequalities of the form [formula] where G is a real function defined on Rm: The form of the constant C in (0.1) plays an important role in applications concerning the problems of M-estimation, especially the Ghosh representation.