Tytuł pozycji:
Rotation Invariance in Graph Convolutional Networks
Convolution filters in deep convolutional networks display rotation variant behavior. While learned invariant behavior can be partially achieved, this paper shows that current methods of utilizing rotation variant features can be improved by proposing a grid-based graph convolutional network. We demonstrate that Grid-GCN heavily outperforms existing models on rotated images, and through a set of ablation studies, we show how the performance of Grid-GCN implies that there exist more performant methods to utilize fundamentally rotation variant features and we conclude that the inherit nature of spectral graph convolutions is able to learn invariant behavior.
1. Track 1: Artificial Intelligence in Applications
2. Session: 15th International Symposium Advances in Artificial Intelligence and Applications