Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Transformer-based cross-modal multi-contrast network for ophthalmic diseases diagnosis

Tytuł:
Transformer-based cross-modal multi-contrast network for ophthalmic diseases diagnosis
Autorzy:
Yu, Yang
Zhu, Hongqing
Data publikacji:
2023
Słowa kluczowe:
ophthalmic disease diagnosis
vision transformer
cross modal
contrastive learning
feature fusion
diagnostyka chorób oczu
transformator wizyjny
fuzja funkcji
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Automatic diagnosis of various ophthalmic diseases from ocular medical images is vital to support clinical decisions. Most current methods employ a single imaging modality, especially 2D fundus images. Considering that the diagnosis of ophthalmic diseases can greatly benefit from multiple imaging modalities, this paper further improves the accuracy of diagnosis by effectively utilizing cross-modal data. In this paper, we propose Transformerbased cross-modal multi-contrast network for efficiently fusing color fundus photograph (CFP) and optical coherence tomography (OCT) modality to diagnose ophthalmic diseases. We design multi-contrast learning strategy to extract discriminate features from crossmodal data for diagnosis. Then channel fusion head captures the semantically shared information across different modalities and the similarity features between patients of the same category. Meanwhile, we use a class-balanced training strategy to cope with the situation that medical datasets are usually class-imbalanced. Our method is evaluated on public benchmark datasets for cross-modal ophthalmic disease diagnosis. The experimental results demonstrate that our method outperforms other approaches. The codes and models are available at https://github.com/ecustyy/tcmn.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies