Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A dependency-based approach to word contextualization using compositional distributional semantics

Tytuł:
A dependency-based approach to word contextualization using compositional distributional semantics
Autorzy:
Gamallo, Pablo
Data publikacji:
2019
Słowa kluczowe:
distributional semantics
compositionality
dependency-based parsing
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
We propose a strategy to build the distributional meaning of sentences mainly based on two types of semantic objects: context vectors associated with content words and compositional operations driven by syntactic dependencies. The compositional operations of a syntactic dependency make use of two input vectors to build two new vectors representing the contextualized sense of the two related words. Given a sentence, the iterative application of dependencies results in as many contextualized vectors as content words the sentence contains. At the end of the contextualization process, we do not obtain a single compositional vector representing the semantic denotation of the whole sentence (or of the root word), but one contextualized vector for each constituent word of the sentence. Our method avoids the troublesome high-order tensor representations of approaches relying on category theory, by defining all words as first-order tensors (i.e. standard vectors). Some corpus-based experiments are performed to both evaluate the quality of the contextualized vectors built with our strategy, and to compare them to other approaches on distributional compositional semantics. The experiments show that our dependency-based method performs as (or even better than) the state-of-the-art.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies