Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Optymalizacja parametrów systemu odometrii wizyjnej RGB-D metodami populacyjnymi

Tytuł:
Optymalizacja parametrów systemu odometrii wizyjnej RGB-D metodami populacyjnymi
Autorzy:
Kostusiak, A.
Skrzypczyński, P.
Data publikacji:
2018
Słowa kluczowe:
parametry systemu
optymalizacja parametrów
odometria wizyjna
RGB-D
system parameters
parameter optimization
visual odometry
Język:
polski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Dokładna lokalizacja jest bardzo ważna w wielu praktycznych zagadnieniach robotyki mobilnej. Często korzysta się z odometrii wizyjnej, obecnie powszechnie wykorzystującej kamery (sensory) RGB-D. W niniejszym artykule badana jest możliwość automatycznego doboru optymalnych parametrów prostego systemu odometrii wizyjnej RGB-D. Wykorzystano i porównano dwie metody optymalizacji oparte na populacji rozwiązań: algorytm genetyczny oraz algorytm roju cząstek. Zbadano wpływ poszczególnych parametrów na dokładność otrzymywanych estymat trajektorii sensora. Na tej podstawie wyciągnięto wnioski zarówno co do skuteczności i efektywności zastosowanych metod optymalizacji, jak i co do wpływu poszczególnych parametrów na dokładność estymat. Eksperymenty przeprowadzono przy wykorzystaniu publicznie dostępnych zestawów danych, aby zapewnić weryfikowalność prezentowanych wyników.
In this paper, we investigate two population-based optimization methods as the means for optimization of the selected parameters in a visual odometry system using RGB-D data. One of the simplest and most used approaches to localization with RGB-D data is feature-based visual odometry that computes frame-to-frame rigid transformations of the sensor upon a sparse set of features and then concatenates these transformations into an estimate of the trajectory. This approach, yet simple, requires careful tuning of a number of parameters that control both the behavior of the feature detector, and the frame-to-frame rota-translation estimation algorithm. Therefore, we propose to employ robust and efficient soft computing optimization methods to find the best parameters for an exemplary RGB-D visual odometry system. We investigate and compare two approaches: the simple to implement particle swarm optimization algorithm, and a more complicated variant of the genetic algorithm. We seek a set of parameters that not only provide good results in terms of the estimated trajectory residual errors but are also applicable to different RGB-D datasets. Moreover, the optimization experiments make it possible to draw more general conclusions as to the role of particular building blocks of the visual odometry system (e.g. RANSAC) in achieving accurate trajectory estimates.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies