Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

The application of adaboost.m1 based on ant colony optimization to classify the risk of delay in the pharmaceutical supply chain

Tytuł:
The application of adaboost.m1 based on ant colony optimization to classify the risk of delay in the pharmaceutical supply chain
Autorzy:
Wyrembek, Mateusz
Data publikacji:
2023
Słowa kluczowe:
ant colony optimization
machine learning
supply chain risk management
delay prediction
algorytm mrówkowy
nauczanie maszynowe
zarządzanie ryzykiem w łańcuchu dostaw
przewidywanie opóżnienia
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
Background: The purpose of this article is to present the developed AdaBoost.M1 based on Ant Colony Optimization (hereby referred to as ACOBoost.M1 throughout the study) to classify the risk of delay in the pharmaceutical supply chain. This study investigates one research hypothesis, namely, that the ACOBoost.M1 can be used to predict the risk of delay in the supply chain and is characterized by a high prediction performance. Methods: We developed a machine learning algorithm based on Ant Colony Optimization (ACO). The meta-heuristic algorithm ACO is used to find the best hyperparameters for AdaBoost.M1 to classify the risk of delay in the pharmaceutical supply chain. The study used a dataset from 4PL logistics service provider. Results: The results indicate that ACOBoost.M1 may predict the risk of delay in the supply chain and is characterized by a high prediction performance. Conclusions: The present findings highlight the significance of applying machine learning algorithms, such as the AdaBoost.M1 model with Ant Colony Optimization for hyperparameter tuning, to manage the risk of delays in the pharmaceutical supply chain. These findings not only showcase the potential for machine learning in enhancing supply chain efficiency and robustness but also set the stage for future research. Further exploration could include investigating other optimization techniques, machine learning models, and their applications across various industries and sectors.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies