Tytuł pozycji:
Logistic Regression Realized with Artificial Neuron and Estimation Formulas
In the paper an experiment is described, that was designed and conducted to verify hypothesis that artificial neuron with sigmoidal activation function can efficiently solve the task of logistic regression in the case when the explaining variable is one-dimensional, and the explained variable is binomial. Computations were performed with 12 sets of statistical parameters, assumed for the generation of 65356 sets of data in each case. Comparative analysis of the obtained results with use of the reference values for the regression coefficients indicated that the investigated neuron can satisfactory perform the task, with efficiency similar to that obtained with classical logistic regression algorithm, when the teaching sets of input data, corresponding with output values 0 and 1, do not allow for simple separation. Moreover, it has been discovered that the simple formulas estimating the statistical distributions parameters from the samples, offer statistically superior assessment of the regression coefficient parameters.