Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Compressed sensing in MRI : mathematical preliminaries and basic examples

Tytuł:
Compressed sensing in MRI : mathematical preliminaries and basic examples
Autorzy:
Błaszczyk, Ł.
Data publikacji:
2016
Słowa kluczowe:
compressed sensing
magnetic resonance imaging
sampling theory
sparsity
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
In magnetic resonance imaging (MRI), k-space sampling, due to physical restrictions, is very time- -consuming. It cannot be much improved using classical Nyquist-based sampling theory. Recent developments utilize the fact that MR images are sparse in some representations (i.e. wavelet coeffi cients). This new theory, created by Candès and Romberg, called compressed sensing (CS), shows that images with sparse representations can be recovered from randomly undersampled k-space data, by using nonlinear reconstruction algorithms (i.e. l1-norm minimization). Throughout this paper, mathematical preliminaries of CS are outlined, in the form introduced by Candès. We describe the main conditions for measurement matrices and recovery algorithms and present a basic example, showing that while the method really works (reducing the time of MR examination), there are some major problems that need to be taken into consideration.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies