Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Prognozowanie zawartości PM2,5 w powietrzu atmosferycznym przy użyciu sieci ELM

Tytuł:
Prognozowanie zawartości PM2,5 w powietrzu atmosferycznym przy użyciu sieci ELM
PM2,5 particulate pollution forecasting using ELM
Autorzy:
Siwek, K.
Baranowski, M.
Grzywacz, T.
Data publikacji:
2018
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
zanieczyszczenie powietrza atmosferycznego
PM2,5
sieci neuronowe
Extreme Learning Machine
ELM
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2018, 96; 307-318
1897-0737
Język:
polski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Artykuł przedstawia nowe podejście do predykcji zawartości pyłów zawieszonych w powietrzu atmosferycznym wykorzystujące sieć neuronową typu ELM (Extreme Learning Machine). Predykcja ta dotyczy obliczenia średniego poziomu zanieczyszczenia powietrza pyłem PM2,5 na warszawskim Ursynowie z jednodniowym wyprzedzeniem. Do zrozumienia wagi problemu zawarto zwięzły opis zagrożeń, jakie niesie za sobą zanieczyszczenie powietrza drobnym pyłem zawieszonym PM2,5. W pracy przedstawiono krótki opis sieci ELM oraz zaprezentowano uzyskane wyniki prognozy. Przeprowadzono analizę uzyskanych wyników. Omówiono zasadność prognozowania oraz wskazano możliwe środki zapobiegawcze i ochronne.

The article presents a new approach to atmospheric dust prediction using an ELM (Extreme Learning Machine) neural network. This prediction concerns the calculation of the average level of PM2,5 air pollution in Warsaw's Ursynów one day ahead. To understand the significance of the problem, a brief description of the hazards posed by PM2,5 air pollution is included. The work presents a short description of the ELM network and presents the obtained forecast results. The analysis of the obtained results was carried out. The validity of forecasting was discussed and possible preventive and protective measures were indicated.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies