Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Automatic stabilization of finite-element simulations using neural networks and hierarchical matrices

Tytuł:
Automatic stabilization of finite-element simulations using neural networks and hierarchical matrices
Autorzy:
Muga, Ignacio
Dobija, Mateusz
Łoś, Marcin
Paszyńska, Anna
Służalec, Tomasz
Paszyński, Maciej
Data publikacji:
2023
Słowa kluczowe:
Petrov–Galerkin method
hierarchical matrices
neural networks
parametric PDEs
automatic stabilization
optimal test functions
Język:
angielski
ISBN, ISSN:
00457825
Prawa:
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
http://creativecommons.org/licenses/by/4.0/legalcode.pl
Dostawca treści:
Repozytorium Uniwersytetu Jagiellońskiego
Artykuł
Petrov–Galerkin formulations with optimal test functions allow for the stabilization of finite element simulations. In particular, given a discrete trial space, the optimal test space induces a numerical scheme delivering the best approximation in terms of a problem-dependent energy norm. This ideal approach has two shortcomings: first, we need to explicitly know the set of optimal test functions; and second, the optimal test functions may have large supports inducing expensive dense linear systems. A concise proposal on how to overcome these shortcomings has been raised during the last decade by the Discontinuous Petrov–Galerkin (DPG) methodology. However, DPG has also some limitations and difficulties: the method requires ultraweak variational formulations, obtained through a hybridization process, which is not trivial to implement at the discrete level. Our motivation is to offer a simpler alternative for the case of parametric PDEs, which can be used with any variational formulation. Indeed, parametric families of PDEs are an example where it is worth investing some (offline) computational effort to obtain stabilized linear systems that can be solved efficiently in an online stage, for a given range of parameters. Therefore, as a remedy for the first shortcoming, we explicitly compute (offline) a function mapping any PDE parameter, to the matrix of coefficients of optimal test functions (in some basis expansion) associated with that PDE parameter. Next, as a remedy for the second shortcoming, we use the low-rank approximation to hierarchically compress the (non-square) matrix of coefficients of optimal test functions. In order to accelerate this process, we train a neural network to learn a critical bottleneck of the compression algorithm (for a given set of PDE parameters). When solving online the resulting (compressed) Petrov–Galerkin formulation, we employ a GMRES iterative solver with inexpensive matrix–vector multiplications thanks to the low-rank features of the compressed matrix. We perform experiments showing that the full online procedure is as fast as an (unstable) Galerkin approach. We illustrate our findings by means of 2D–3D Eriksson–Johnson problems, together with 2D Helmholtz equation.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies