Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Using a geographically weighted regression model to explore the influencing factors of CO2 emissions from energy consumption in the industrial sector

Tytuł:
Using a geographically weighted regression model to explore the influencing factors of CO2 emissions from energy consumption in the industrial sector
Autorzy:
Wu R.
Zhang J.
Bao Y.
Tong S.
Język:
angielski
Dostawca treści:
AGRO
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
This study presents the methodology as well as a quantitative analysis of the influence of social and economic factors, namely GDP, population, economic growth rate, urbanization rate, and industrial structure on CO2 emissions as a result of energy consumption in the 101 counties of Inner Mongolia’s industrial sector based on a geographically weighted regression model (GWR) and geographical information systems (GIS) from the perspectives of energy and environmental science. The results show significant differences in the measured CO2 emission levels among different counties. Utilizing the GWR method (which was tested on the smallest scale that has been published thus far), the relationship between CO2 emissions and these five explanatory variables produced an overall model fit of 99%. The GWR results showed that the parameters of variables in the GWR varied spatially, suggesting that the influencing factors had different effects on the CO2 emissions among the various counties. Overall, population, GDP, and urbanization rates positively affect CO2 emissions, industrial structure, and economic growth rate, and affect CO2 emissions both positively and negatively. We also characterize the fact that varying industrial structures and economic growth rates result in different effects on the CO2 emission of various regions.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies