Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Zastosowanie modelu uczenia maszynowego do realizacji procesora analogowego

W pracy zaproponowano wykorzystanie, opartego na transformacjach ortogonalnych i biortogonalnych, modelu uczenia maszynowego do syntezy procesora realizującego funkcję dodawania i mnożenia liczb rzeczywistych. Ze względu na cechy bezstratności oraz realizację zasady superpozycji model ten można zakwalifikować jako system kwantowego przetwarzania sygnałów.
The goal of this paper is to present a universal machine learning model using orthogonal and biorthogonal transformations based on Hurwitz-Radon matrices. This model was used to synthesize a processor that performs the function of adding and multiplying real numbers. Due to the lossless features and implementation of the superposition principle, the model can be qualified as a quantum signal processing system.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies