Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Coverage estimation of benthic habitat features by semantic segmentation of underwater imagery from South-eastern Baltic reefs using deep learning models

Tytuł:
Coverage estimation of benthic habitat features by semantic segmentation of underwater imagery from South-eastern Baltic reefs using deep learning models
Autorzy:
Šiaulys, Andrius
Vaičiukynas, Evaldas
Medelytė, Saulė
Buškus, Kazimieras
Data publikacji:
2024
Słowa kluczowe:
underwater video
epibenthos
mosaicking
segmentation
computer vision
PSPNet
ResNet
Baltic Sea
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Underwater imagery (UI) is an important and sometimes the only tool for mapping hard-bottom habitats. With the development of new camera systems, from hand-held or simple “drop-down” cameras to ROV/AUV-mounted video systems, video data collection has increased considerably. However, the processing and analysing of vast amounts of imagery can become very labour-intensive, thus making it ineffective both time-wise and financially. This task could be simplified if the processes or their intermediate steps could be done automatically. Luckily, the rise of AI applications for automatic image analysis tasks in the last decade has empowered researchers with robust and effective tools. In this study, two ways to make UI analysis more efficient were tested with eight dominant visual features of the Southeastern Baltic reefs: 1) the simplification of video processing and expert annotation efforts by skipping the video mosaicking step and reducing the number of frames analysed; 2) the application of semantic segmentation of UI using deep learning models. The results showed that the annotation of individual frames provides similar results compared to 2D mosaics; moreover, the reduction of frames by 2–3 times resulted in only minor differences from the baseline. Semantic segmentation using the PSPNet model as the deep learning architecture was extensively evaluated, applying three variants of validation. The accuracy of segmentation, as measured by the intersection-over-union, was mediocre; however, estimates of visual coverage percentages were fair: the difference between the expert annotations and model-predicted segmentation was less than 6–8%, which could be considered an encouraging result.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies