Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Badanie procesu spalania osadów ściekowych z wykorzystaniem uczenia głębokiego

Tytuł:
Badanie procesu spalania osadów ściekowych z wykorzystaniem uczenia głębokiego
Autorzy:
Hu, Weijie
Data publikacji:
2024
Słowa kluczowe:
oczyszczanie ścieków
spalanie osadów ściekowych
głębokie uczenie
sieć neuronowa z propagacją wsteczną
korzyści ekologiczne
sewage treatment
sludge incineration
deep learning
back-propagation neural network
ecological benefit
Język:
polski
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Model oceny wykonalności procesu spalania osadów ściekowych został opracowany przy użyciu sieci neuronowej wstecznej propagacji (BPNN), aby zapewnić istotne wsparcie dla oczyszczalni ścieków, pomagając im w ocenie warunków ekologicznych i jakości środowiska miejskiego za pomocą zaawansowanej technologii sztucznej inteligencji. Dane z węzłów sieci zostały przeanalizowane w celu ujawnienia ukrytych struktur klasowych w danych dotyczących zanieczyszczeń ekologicznych i wpływu spalania osadów ściekowych na wyniki oczyszczania ścieków. Znaczącą przewagę nad innymi metodami osiągnięto przy wskaźniku dokładności przekraczającym 95%. Ten model może pomóc miejskim oczyszczalniom ścieków w ocenie procesów spalania osadów ściekowych i zwiększeniu wydajności operacyjnej, zmniejszeniu ich śladu ekologicznego i skutecznym sprostaniu współczesnym wyzwaniom.
A feasibility assessment model of sludge incineration treatment was developed by using back-propagation neural network (BPNN) to provide a vital support to sewage treatment plants, aiding them in assessing urban ecol. conditions and environ. qual. with advanced artificial intelligence technol. The data from network nodes were analyzed to reveal hidden class structures in ecol. pollution data and the impact of sludge incineration on sewage treatment outcomes. A significant advantage over other methods was achieved at the accuracy rate over 95%. This model can help urban sewage plants to evaluate sludge incineration treatments and enhance operational efficiency, reduce their ecol. footprint, and address contemporary challenges effectively.
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies