Tytuł pozycji:
Bivariate natural exponential families with linear diagonal variance functions
It is well known that natural exponential families (NEFs) are uniquely determined by their variance functions (VFs). However, there exist examples showing that even an incomplete knowledge of a matrix VF can be sufficient to determine a multivariate NEF. Following such an idea, in this paper a complete description of bivariate NEFs with linear diagonal of the matrix VF is given. As a result we obtain the families of distributions with marginals that are some combinations of Poisson and normal distributions. Furthermore, the characterization extends (in two-dimensional case) the classification of NEFs with linear matrix VF obtained by Letac [11]. The main result is formulated in terms of regression properties.