Tytuł pozycji:
Modelling the high‑temperature deformation characteristics of S355 steel using artificial neural networks
In this study, artificial neural networks were used to predict the plastic flow behaviour of S355 steel in the process of high-temperature deformation. The aim of the studies was to develop a model of changes in stress as a function of strain, strain rate and temperature, necessary to build an advanced numerical model of the soft-reduction process. The high-temperature characteristics of the tested steel were determined with a Gleeble 3800 thermo-mechanical simulator. Tests were carried out in the temperature range of 400-1450 °C for two strain rates, i.e. 0.05 and 1 s-1. The test results were next used to develop and verify a rheological model based on artificial neural networks (ANNs). The conducted studies show that the selected models offer high accuracy in predicting the high-temperature flow behaviour of S355 steel and can be successfully used in numerical modelling of the soft-reduction process.
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)