Tytuł pozycji:
Klasyfikacja obrazów w tomografii komputerowej z wykorzystaniem głębokich sieci neuronowych
Głębokie uczenie jest podkategorią uczenia maszynowego, które polega na tworzeniu wielowarstwowych sieci neuronowych, naśladując tym samym wykonywanie zadań przez ludzki mózg. Algorytmy głębokiego uczenia są ułożone według rosnącej złożoności, dlatego możliwe jest stworzenie systemów do analizy dużych zbiorów danych. Proces uczenia odbywa się bez nadzoru, a program buduje samodzielnie zestaw cech do rozpoznania. Artykuł przybliża na czym polega owa klasyfikacja obrazu tomograficznego.
Deep learning is a subcategory of machine learning, which involves the creation of multilayer neural networks, mimicking the performance of tasks by the human brain. Deep learning algorithms are arranged according to increasing complexity, so it is possible to create systems to analyze large data sets. The learning process takes place unsupervised, and the program builds a set of features to recognize. The article presents the classification of the tomographic image.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).