Tytuł pozycji:
Dobór zmiennych objaśniających z wykorzystaniem metody MARSplines na przykładzie prognozowania dobowego zapotrzebowania na moc szczytową 15-minutową w KSE
Artykuł prezentuje możliwość skorzystania z metod statystycznych automatyzujących dobór zmiennych objaśniających na przykładzie szczytowego obciążenia dobowego KSE. Testy ex post dotyczyły 10 zbiorów zmiennych objaśniających dla metod statystycznych klasycznych i typu Data Mining. Uzyskana macierz wyników pozwala wstępnie wybrać najkorzystniejszy zbiór zmiennych objaśniających i metodę statystyczną.
The article examines the possibility of using statistical methods for the automated selection of explanatory variables of the daily peak demand in the National Power System. An analysis of 10 explanatory variable sets was conducted through classical and Data Mining methods. The obtained results, which are presented as a matrix of (ex-post) statistical measures, prove to be useful in the selection of the appropriate statistical method and the selection of explanatory variables.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).