Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

The EOG event recognition method in an EEG signal towards SSVEP BCI improvement

Tytuł:
The EOG event recognition method in an EEG signal towards SSVEP BCI improvement
Autorzy:
Kaczmarek, P.
Mańkowski, T.
Tomczyński, J.
Data publikacji:
2015
Słowa kluczowe:
Hybrid BCI
EEG
EOG artifact
SSVEP
tree classifier
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
This paper presents a method of recognizing EOG artifacts in an EEG signal. Moreover, it shows the possibility of determining the direction of eye movement. The idea behind this method is to develop a hybrid brain-computer interface relying on SSVEP phenomena and EOG artifacts acquired from the EEG signal. Recognition of an EOG event and its direction can be used to improve the SSVEP detection accuracy, overall system responsiveness, and increase the information transfer rate (ITR). Eye movement direction is recognized using a decision tree and histogram-based features calculated from EEG signals recorded in Fp1-O1 and Fp2-O2 points. The accuracy of 75% was achieved for a group of 8 subjects, while the average precision of detecting movement direction in horizontal plane was 78%.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies