Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Defect severity code prediction basedon ensemble learning

In machine learning, learning algorithms that learn from other algorithms are called meta-learning. New algorithms called Ensemble algorithms have surfaced as a viable method to improve defect prediction models' accuracy and dependability. In software development defect prediction of software engineering is still a big challenge, and leads to the failure of systems, increases the cost of maintenance, and makes the development process more difficult. Consequently, defect prediction systems have become more popular as a way to foresee possible flaws early on in the development process. Defect prediction is the process that specifies the possible defects in the code written newly or the existing modified code without the use of code testing.This paper introduces ensemble learning ideas, reviews the traditional defect prediction models, and investigates ensemble learning techniques for defect classification and prediction such as bagging, boosting, stacking, and random forests, Case studies and actualexperiments illustrate the important roleof ensemble algorithms in classifying five severity types of defects and predicting the severity code of defects to improve the software development process by reducing the time and effort needed to determine the type of defect.
W uczeniu maszynowym algorytmy uczenia się, które uczą się na podstawie innych algorytmów, nazywane są metauczeniem. Pojawiłysię nowe algorytmy zwane algorytmami Ensemble jako realna metoda poprawy dokładności i niezawodności modeli przewidywania defektów. W rozwoju oprogramowania przewidywanie defektów w inżynierii oprogramowania jest nadal dużym wyzwaniem i prowadzi do awarii systemów, zwiększa koszty utrzymania i utrudnia proces tworzenia oprogramowania. W rezultacie systemy przewidywania defektów stały się coraz bardziej popularne jako sposób przewidywania możliwych wad na wczesnym etapie procesu rozwoju. Przewidywanie defektów to proces, który określa możliwe defekty w nowo napisanym kodzie lub istniejącym zmodyfikowanym kodzie bez użycia testowania kodu. W artykule przedstawiono koncepcje uczenia się zespołowego, dokonano przeglądu tradycyjnych modeli przewidywania defektów i zbadano techniki uczenia się zespołowego do klasyfikacji i przewidywania defektów, takiejak pakowanie, wzmacnianie, układanie w stosy i lasy losowe. Studia przypadków i rzeczywiste eksperymenty ilustrują ważną rolę algorytmów zespołowych w klasyfikacji pięć typów ważności defektów i przewidywanie kodu ważności defektów w celu usprawnienia procesu tworzenia oprogramowania poprzez skrócenie czasu i wysiłku potrzebnego do określenia rodzaju defektu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies