Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Detekcja uszkodzeń odporna na niepewność modelu neuronowego

Tytuł:
Detekcja uszkodzeń odporna na niepewność modelu neuronowego
Autorzy:
Mrugalski, M.
Korbicz, J.
Data publikacji:
2005
Słowa kluczowe:
detekcja uszkodzeń
niepewność modelu
sieć neuronowa GMDH
fault detection
model uncertainty
GMDH neural network
Język:
polski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
W pracy przedstawiony zosta) problem detekcji uszkodzeń odpornej na niepewność modelu neuronowego. Na przykładzie sieci neuronowej GMDH przedstawiono przyczyny powstawania niepewności modelu otrzymywanego podczas identyfikacji. Zaprezentowana metoda wyznaczania niepewności modelu w postaci przedziału ufności wyjścia systemu umożliwiła opracowanie odpornego układu detekcji uszkodzeń w oparciu o technikę adaptacyjnych progów decyzyjnych.
In the paper the problem of the robust fault detection under the neural model uncertainty was presented and widely discussal. In particular, the causes of forming the GMDH neural model uncertainty obtained via system identification were shown. The presented method of confidence estimation of GMDH neural networks in (he form of the system output uncertainty interval enables development of the robust fault detection scheme on the basis of the adaptive threshold technique.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies