Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Power transformer fault warning combining support vector machine and improved grey wolf optimization algorithm

Tytuł:
Power transformer fault warning combining support vector machine and improved grey wolf optimization algorithm
Autorzy:
Zhao, Shuzong
Pattanadech, Norasage
Data publikacji:
2025
Słowa kluczowe:
fault diagnosis
HGWO
hybrid grey wolf optimizer
SDAE
stacked denoising autoencoder
SVM
support vector machine
transformer
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
To optimize the parameter setting of the support vector machine and improve the classification performance and computational efficiency of power transformer fault diagnosis, this study proposes an improved grey wolf optimization algorithm. By optimizing the global search and local optimization capabilities of the grey wolf algorithm and combining them with stacked denoising autoencoders, a new power transformer fault warning model is constructed. Firstly, the grey wolf optimization algorithm is optimized through four strategies: elite reverse learning, nonlinear control parameters, Lévy flight, and particle swarm optimization, which improve its global search and local optimization capabilities. Secondly, the stacked denoising autoencoder is utilized to extract high-level features of fault data, and the improved GWO algorithm and SVM are combined to complete fault classification. The results indicated that the proposed diagnostic model achieved a diagnostic accuracy of 0.979, a recall rate of 0.986, and an F1 value of 0.983 in benchmark performance testing. In practical applications, the average fault diagnosis accuracy of this model could reach up to 99.21%, and the average diagnosis time was only 0.08 s. The developed power transformer fault warning model can provide an efficient and reliable technical solution for fault diagnosis in the power system.
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies