Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Sztuczna sieć neuronowa kontra technika algorytmiczna w zadaniu klasyfikacji kształtów

W artykule przedstawiono wyniki badań porównawczych zadania klasyfikacji prostych kształtów. Porównano opracowany model sztucznej sieci neuronowej typu CNN z techniką algorytmiczną dokonującą detekcji krawędzi algorytmem Canny’ego i klasyfikującą obiekty na podstawie liczby i wzajemnego położenia rozpoznanych krawędzi. Do eksperymentów przygotowano zbiór danych składający się z 2162 zdjęć reprezentujących przedmioty o kształtach: prostokąta, koła i trójkąta. Sieć neuronowa uzyskała dokładność klasyfikacji równą 85%, a technika algorytmiczna 77%. Porównanie czasu działania pokazało jednak wyższość techniki algorytmicznej: działała ona 8 razy szybciej. Rozwiązanie może znajdować zastosowania do segregacji obiektów na liniach produkcyjnych i być zaimplementowane na komputerze jednoukładowym.
The article presents results of comparative research on the task of classifying simple shapes. The developed model of an artificial neural network of the CNN type was compared with an algorithmic technique that detects edges using the Canny algorithm and classifies objects based on the number and relative position of recognized edges. A data set consisting of 2162 photos representing objects with the shapes of a rectangle, a circle and a triangle was prepared for the experiments. The neural network achieved a classification accuracy of 85% and the algorithmic technique 77%. However, a comparison of the processing time showed the superiority of the algorithmic technique: it worked 8 times faster. The solution can be used for the segregation of objects on production lines and be implemented on a single-chip computer.
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies