Tytuł pozycji:
Optimal stopping model with unknown transition probabilities
This article concerns the optimal stopping problem for a discrete-time Markov chain with observable states, but with unknown transition probabilities. A stopping policy is graded via the expected total-cost criterion resulting from the non-negative running and terminal costs. The Dynamic Programming method, combined with the Bayesian approach, is developed. A series of explicitly solved meaningful examples illustrates all the theoretical issues.