Tytuł pozycji:
Exponential spline method for singularly perturbed third-order boundary value problems
The exponential spline function is presented to find the numerical solution of third-order singularly perturbed boundary value problems. Convergence analysis of the method is briefly discussed, and it is shown to be sixth order convergence. To validate the applicability of the method, some model problems are solved for different values of the perturbation parameter, and the numerical results are presented both in tables and graphs. Furthermore, the present method gives more accurate solution than some methods existing in the literature.