Tytuł pozycji:
Some results on generalized finite operators and range kernel orthogonality in Hilbert spaces
Let be a complex Hilbert space and B(H) denotes the algebra of all bounded linear operators acting on H. In this paper, we present some new pairs of generalized finite operators. More precisely, new pairs of operators (A, B) ∈ B(H) × B(H) satisfying: ∥ AX – XB − I∥ ≥ 1, for all X ∈ B(H). An example under which the class of such operators is not invariant under similarity orbit is given. Range kernel orthogonality of generalized derivation is also studied.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).