Tytuł pozycji:
Minig rules of concept drift using genetic algorithm
In a database the data concepts changes over time and this phenomenon is called as concept drift. Rules of concept drift describe how the concept changes and sometimes they are interesting and mining those rules becomes more important. CDR tree algorithm is currently used to identify the rules of concept drift. Building a CDR tree becomes a complex process when the domain values of the attributes get increased. Genetic Algorithms are traditionally used for data mining tasks. In this paper, a Genetic Algorithm based approach is proposed for mining the rules of concept drift, which makes the mining task simpler and accurate when compared with the CDR-tree algorithm.