Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Forecasting of short-term power demands in Polish Power System using ensemble of LSTM networks

Tytuł:
Forecasting of short-term power demands in Polish Power System using ensemble of LSTM networks
Autorzy:
Ciechulski, Tomasz
Data publikacji:
2025
Słowa kluczowe:
LSTM
neural networks
Polish Power System
power demand
time series forecasting
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
The article presents and discusses the results of the research of forecasting power demands in Polish Power System with time horizon of one hour ahead in conditions of limited availability of forecasting model input data, covering only three months. The prediction was carried out using deep neural networks - LSTM (Long Short-Term Memory) connected to an ensemble. The performance of the ensemble is much more efficient than individual networks working separately. The numerical experiments were conducted using MATLAB computing environment. The accuracy of the predictions was estimated using such statistical measures as MAPE, MAE, RMSE, Pearson correlation coefficient R.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies