Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Utilizing User Access Sequence to Mitigate the Cold Start Problem in Collaborative Filtering Recommendation

Tytuł:
Utilizing User Access Sequence to Mitigate the Cold Start Problem in Collaborative Filtering Recommendation
Autorzy:
Deng, X.
Data publikacji:
2013
Słowa kluczowe:
collaborative filtering
cold start
user access sequence
recommender systems
filtrowanie uwspólnione
zimny start
sekwencja dostępu
systemy rekomendacji
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Collaborative filtering (CF) is one of the most successful recommending techniques, but it suffers from the cold start problem which severely affected the quality of recommendation. To address this problem, we propose a novel hybrid approach, named UAS-CF, which incorporates user access sequence into traditional CF for improving the quality of recommendation. Experiments on three datasets were carried out to evaluate the performance of our method. Our results show that our approach outperforms other methods and improves recommendation quality effectively.
W artykule zaprezentowano nowe podejście UAS-CF do obsługi poleceń, które włącza sekwencję dostępu użytkownika do klasycznego filtrowania uwspólnionego (ang. Collaborative Filtering), w celu polepszenia jakości rekomendacji. Badania eksperymentalne, przeprowadzone na trzech sekwencjach danych, wykazują wysoką jakość rekomendacji w porównaniu z innymi metodami.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies