Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A RBF artificial neural network to predict a fuel cell maximum power point

In this article, an artificial neural network (ANN) based maximum power point tracker (MPTT) for proton exchange membrane fuel cell (PEMFC) is proposed. For this purpose, a Radial Basis Function Artificial Neural Network (RBF ANN) is used to predict the voltage and the current of a fuel cell maximum power point at different fuel cell operating conditions. To train the proposed artificial neural network, a set of maximum power points defined by their corresponding current and voltage values is generated using a validated electrochemical fuel cell model. To ensure the validity of the ANN, we compare the results found by the ANN to those obtained using the electrochemical PEMFC model. The results show that the developed ANN can accurately and quickly predict current and voltage fuel cells at maximum power point for any operating conditions.
W tym artykule zaproponowano śledzenie maksymalnego punktu mocy (MPTT) oparte na sztucznej sieci neuronowej (ANN) dla ogniwa paliwowego z membraną do wymiany protonów (PEMFC). W tym celu wykorzystuje się sztuczną sieć neuronową Radial Basis Function (RBF ANN) do przewidywania napięcia i prądu punktu maksymalnej mocy ogniwa paliwowego w różnych warunkach pracy ogniwa paliwowego. Aby wytrenować proponowaną sztuczną sieć neuronową, przy użyciu sprawdzonego modelu elektrochemicznego ogniwa paliwowego generowany jest zestaw maksymalnych punktów mocy określonych przez odpowiadające im wartości prądu i napięcia. Aby zapewnić wiarygodność ANN, porównujemy wyniki uzyskane przez ANN z wynikami uzyskanymi przy użyciu elektrochemicznego modelu PEMFC. Wyniki pokazują, że opracowana SSN może dokładnie i szybko przewidywać prąd i napięcie ogniw paliwowych w punkcie maksymalnej mocy w dowolnych warunkach pracy.
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies