Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Classification of Medical Data Derived from Diagnostic Devices Using Ensembles of Classifiers

Tytuł:
Classification of Medical Data Derived from Diagnostic Devices Using Ensembles of Classifiers
Autorzy:
Byczkowska-Lipińska, L.
Wosiak, A.
Data publikacji:
2015
Słowa kluczowe:
data mining
classification
ensemble classification
medical data
eksploracyjna analiza danych
klasyfikacja
komitety klasyfikatorów
dane medyczne
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The use of ensemble of classifiers for classification of medical data derived from diagnostic devices has been proposed in this research. The experimental studies were carried out on three datasets concerning different medical problems: arrhythmia, breast cancer and coronary artery disease using SPECT images. The comparison of single classification algorithms (kNN- IBk, C4.5 - J48, Naïve Bayes, Random Tree and SMO) with bagging, boosting and majority voting using all single classifiers was performed. Experimental studies have proved that hybrid classifiers outperformed single classification in all cases in terms of accuracy, precision, sensitivity and root squared mean error, regardless of the dataset.
W ramach niniejszej pracy zaproponowane zostało zastosowanie komitetów klasyfikatorów w procesie klasyfikacji danych pochodzących z urządzeń medycznych. Badania eksperymentalne zostały przeprowadzone na trzech zbiorach danych dotyczących różnych problemów medycznych: arytmii, nowotworu piersi oraz choroby wieńcowej. Przeprowadzono porównanie pojedynczych technik klasyfikacji (kNNIBk, C4.5 - J48, Naïve Bayes, Random Tree oraz SMO) z metodami hybrydowymi (bagging, boosting oraz głosowanie większościowe). Badania eksperymentalne wykazały skuteczność klasyfikacji z zastosowaniem komitetów klasyfikatorów – w wszystkich badanych przypadkach rezultaty klasyfikacji hybrydowej były lepsze od wyników najlepszego pojedynczego klasyfikatora biorąc pod uwagę dokładność, precyzję, czułość oraz błąd średniokwadratowy.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies