Tytuł pozycji:
Classification of Medical Data Derived from Diagnostic Devices Using Ensembles of Classifiers
The use of ensemble of classifiers for classification of medical data derived from diagnostic devices has been proposed in this research. The experimental studies were carried out on three datasets concerning different medical problems: arrhythmia, breast cancer and coronary artery disease using SPECT images. The comparison of single classification algorithms (kNN- IBk, C4.5 - J48, Naïve Bayes, Random Tree and SMO) with bagging, boosting and majority voting using all single classifiers was performed. Experimental studies have proved that hybrid classifiers outperformed single classification in all cases in terms of accuracy, precision, sensitivity and root squared mean error, regardless of the dataset.
W ramach niniejszej pracy zaproponowane zostało zastosowanie komitetów klasyfikatorów w procesie klasyfikacji danych pochodzących z urządzeń medycznych. Badania eksperymentalne zostały przeprowadzone na trzech zbiorach danych dotyczących różnych problemów medycznych: arytmii, nowotworu piersi oraz choroby wieńcowej. Przeprowadzono porównanie pojedynczych technik klasyfikacji (kNNIBk, C4.5 - J48, Naïve Bayes, Random Tree oraz SMO) z metodami hybrydowymi (bagging, boosting oraz głosowanie większościowe). Badania eksperymentalne wykazały skuteczność klasyfikacji z zastosowaniem komitetów klasyfikatorów – w wszystkich badanych przypadkach rezultaty klasyfikacji hybrydowej były lepsze od wyników najlepszego pojedynczego klasyfikatora biorąc pod uwagę dokładność, precyzję, czułość oraz błąd średniokwadratowy.