Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Exponential rate of convergence independent of the dimension in a mean-field system of particles

Tytuł:
Exponential rate of convergence independent of the dimension in a mean-field system of particles
Autorzy:
Dyda, B.
Tugaut, J.
Data publikacji:
2017
Słowa kluczowe:
mean-field model
Poincaré inequality
transportation inequality
high dimension
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
This article deals with a mean-field model. We consider a large number of particles interacting through their empirical law. We know that there is a unique invariant probability for this diffusion.We look at functional inequalities. In particular, we briefly show that the diffusion satisfies a Poincaré inequality. Then, we establish a so-called WJ-inequality, which is independent of the number of particles.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies