Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Stabilization analysis of impulsive state-dependent neural networks with nonlinear disturbance: A quantization approach

Tytuł:
Stabilization analysis of impulsive state-dependent neural networks with nonlinear disturbance: A quantization approach
Autorzy:
Hong, Yaxian
Bin, Honghua
Huang, Zhenkun
Data publikacji:
2020
Słowa kluczowe:
state dependent neural network
quantized input
stabilization analysis
sieć neuronowa
dane wejściowe kwantyzowane
analiza stateczności
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
In this paper, the problem of feedback stabilization for a class of impulsive state-dependent neural networks (ISDNNs) with nonlinear disturbance inputs via quantized input signals is discussed. By constructing quasi-invariant sets and attracting sets for ISDNNs, we design a quantized controller with adjustable parameters. In combination with a suitable ISS-Lyapunov functional and a hybrid quantized control strategy, we propose novel criteria on input-to-state stability and global asymptotical stability for ISDNNs. Our results complement the existing ones. Numerical simulations are reported to substantiate the theoretical results and effectiveness of the proposed strategy.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies