Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A comparative analysis of automatic classification and grading methods for knee osteoarthritis focussing on X-ray images

Tytuł:
A comparative analysis of automatic classification and grading methods for knee osteoarthritis focussing on X-ray images
Autorzy:
Saini, Deepak
Chand, Trilok
Chouhan, Devendra K.
Prakash, Mahesh
Data publikacji:
2021
Słowa kluczowe:
knee osteoarthritis
convolution neural network
deep learning
machine learning
computer aided diagnosis
staw kolanowy
choroba zwyrodnieniowa
sieć neuronowa konwolucyjna
uczenie głębokie
uczenie maszynowe
diagnoza wspomagana komputerowo
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Objective: The purpose of present review paper is to introduce the reader to key directions of manual, semi-automatic and automatic knee osteoarthritis (OA) severity classification from plain radiographs. This is a narrative review article in which we have described recent developments in severity evaluation of knee OA from X-ray images. We have primarily focussed on automatic analysis and have reviewed articles in which machine learning, transfer learning, active learning, etc. have been employed on X-ray images to access and classify the severity of knee OA. Methods: All original research articles on OA detection and classification using X-ray images published in English were searched on PubMed database, Google Scholar, RSNA radiology databases in year 2019. The search terms of ‘‘knee Osteoarthritis” were combined with search terms ‘‘Machine Learning”, ‘severity” and ‘‘X-ray”. Results: The initial search on various publication databases revealed a total of 743 results, out of which only 26 articles were considered relevant to radiographic knee OA severity analysis. The majority of the articles were based on automatic analysis. Manual segmentation based articles were least in numbers. Conclusion: Computer aided methods to diagnose knee OA are great tools to detect OA at ealry stages. Advancements in Human Computer Interface systems have led the researchers to bridge the gap between machine learning algorithms and expert healthcare professionals to provide better and timely treatment options to the knee OA affected patients.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies