Tytuł pozycji:
Rozszerzony algorytm Pohliga-Hellmana i jego zastosowanie do faktoryzacji
Wskażemy ścisły związek między problemami logarytmu dyskretnego i faktoryzacji. Opiszemy mianowicie uogólnienie algorytmu Pohliga-Hellmana dla grup niecyklicznych Z*n, które można zastosować do derandomizacji algorytmu p−1 Pollarda. Algorytm ten bowiem w w wersji potrzebuje źródła losowości. Okazuje się, że obliczenia można przeprowadzić deterministycznie bez znaczącego pogorszenia złożoności.
We will show that the discrete logarithm problem and the problem of factoring are closely related. Namely, we will describe a generalization of the Pohlig-Hellman algorithm to noncyclic Z*n, groups which can be used to derandomize Pollard’s p − 1 algorithm. The original version of this factoring algorithm needs indeed a source of randomness. It turns out however that the computations can be done deterministically with only slightly worse complexity.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).