Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Performance evaluation of stock price prediction models using EMAGRU

Tytuł:
Performance evaluation of stock price prediction models using EMAGRU
Autorzy:
Erizal, Erizal
Diqi, Mohammad
Data publikacji:
2023
Słowa kluczowe:
stock prediction
deep learning
GRU
EMA
ReLU
AntiReLU
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
Stock price prediction is an exciting issue and is very much needed by investors and business people to develop their assets. The main difficulties in predicting stock prices are dynamic movements, high volatility, and noises caused by company performance and external influences. The traditional method investors use is the technical analysis based on statistics, valuation of previous stock portfolios, and news from the mass media and social media. Deep learning can predict stock price movements more accurately than traditional methods. As a solution to the issue of stock prediction, the authors offer the Exponential Moving Average Gated Recurrent Unit (EMAGRU) model and demonstrate its utility. The EMAGRU architecture contains two stacked GRUs arranged in parallel. The inputs and outputs are the EMA10 and EMA20, formed from the closing prices over ten years. The authors also combine the AntiReLU and ReLU activation functions into the model so that EMAGRU has 6 model variants. The proposed model produces low losses and high accuracy. RMSE, MEPA, MAE, and R^2 are 0.0060, 0.0064, 0.0050, and 0.9976 for EMA10, and 0.0050, 0.0058, 0.0045, and 0.9982 for EMA20, respectively.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies