Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Automated diagnosis of COVID stages from lung CT images using statistical features in 2-dimensional flexible analytic wavelet transform

Tytuł:
Automated diagnosis of COVID stages from lung CT images using statistical features in 2-dimensional flexible analytic wavelet transform
Autorzy:
Patel, Rajneesh Kumar
Kashyap, Manish
Data publikacji:
2022
Słowa kluczowe:
COVID-19 diagnosis
image classification
machine learning
feature extraction
medical imaging
FAWT
image decomposition
diagnoza COVID-19
klasyfikacja obrazu
uczenie maszynowe
ekstrakcja cech
obrazowanie medyczne
dekompozycja obrazu
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
TheCOVID-19 epidemic has been causing a global problem since December 2019.COVID-19 is highly contagious and spreads rapidly throughout the world. Thus, early detection is essential. The progression of COVID-19 lung illness has been demonstrated to be aided by chest imaging. The respiratory system is the most vulnerable component of the human body to the COVID virus. COVID can be diagnosed promptly and accurately using images from a chest X-ray and a computed tomography scan. CT scans are preferred over X-rays to rule out other pulmonary illnesses, assist venous entry, and pinpoint any new heart problems. The traditional and trending tools are physical, time-inefficient, and not more accurate. Many techniques for detecting COVID utilizing CT scan images have recently been developed, yet none of them can efficiently detect COVID at an early stage. We proposed a two-dimensional Flexible analytical wavelet transform (FAWT) based on a novel technique in this work. This method is decomposed pre-processed images into sub-bands. Then statistical-based relevant features are extracted, and principal component analysis (PCA) is used to identify robust features. After that, robust features are ranked with the help of the Student’s t-value algorithm. Finally, features are applied to Least Square-SVM (RBF) for classification. According to the experimental outcomes, our model beat state-of-the-art approaches for COVID classification. This model attained better classification accuracy of 93.47%, specificity 93.34%, sensitivity 93.6% and F1-score 0.93 using tenfold cross-validation.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies