Tytuł pozycji:
Instance Segmentation Model Created from Three Semantic Segmentations of Mask, Boundary and Centroid Pixels Verified on GlaS Dataset
Segmentation is the key computer vision task in modern medicine applications. Instance segmentation became the prevalent way to improve segmentation performance in recent years. This work proposes a novel way to design an instance segmentation model that combines 3 semantic segmentation models dedicated for foreground, boundary and centroid predictions. It contains no detector so it is orthogonal to a standard instance segmentation design and can be used to improve the performance of a standard design. The presented custom designed model is verified on the Gland Segmentation in Colon Histology Images dataset.
1. Track 4: Information Systems and Technology
2. Technical Session: 2nd Special Session on Data Science in Health, Ecology and Commerce
3. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).