Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A New Multi-Step Backward Cloud Transformation Algorithm Based on Normal Cloud Model

Tytuł:
A New Multi-Step Backward Cloud Transformation Algorithm Based on Normal Cloud Model
Autorzy:
Xu, C.
Wang, G.
Zhang, Q.
Data publikacji:
2014
Słowa kluczowe:
concept expression
cognitive transformation
normal cloud model
backward cloud transformation
mean squared error
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The representation and processing of uncertainty information is one of the key basic issues of the intelligent information processing in the face of growing vast information, especially in the era of network. There have been many theories, such as probability statistics, evidence theory, fuzzy set, rough set, cloud model, etc., to deal with uncertainty information from different perspectives, and they have been applied into obtaining the rules and knowledge from amount of data, for example, data mining, knowledge discovery, machine learning, expert system, etc. Simply, This is a cognitive transformation process from data to knowledge (FDtoK). However, the cognitive transformation process from knowledge to data (FKtoD) is what often happens in human brain, but it is lack of research. As an effective cognition model, cloud model provides a cognitive transformation way to realize both processes of FDtoK and FKtoD via forward cloud transformation (FCT) and backward cloud transformation (BCT). In this paper, the authors introduce the FCT and BCT firstly, and make a depth analysis for the two existing single-step BCT algorithms. We find that these two BCT algorithms lack stability and sometimes are invalid. For this reason we propose a new multi-step backward cloud transformation algorithm based on sampling with replacement (MBCT-SR) which is more precise than the existing methods. Furthermore, the effectiveness and convergence of new method is analyzed in detail, and how to set the parameters m, r appeared in MBCT-SR is also analyzed. Finally, we have error analysis and comparison to demonstrate the efficiency of the proposed backward cloud transformation algorithm for some simulation experiments.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies