Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

An Efficient Hybrid Classifier Model for Customer Churn Prediction

Tytuł:
An Efficient Hybrid Classifier Model for Customer Churn Prediction
Autorzy:
Anitha, M. A.
Sherly, K. K.
Data publikacji:
2023
Słowa kluczowe:
customer churn prediction
bag of learners
ANN
SVM
regression
associative classifier
Apriori Algorithm
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
Customer churn prediction is used to retain customers at the highest risk of churn by proactively engaging with them. Many machine learning-based data mining approaches have been previously used to predict client churn. Although, single model classifiers increase the scattering of prediction with a low model performance which degrades reliability of the model. Hence, Bag of learners based Classification is used in which learners with high performance are selected to estimate wrongly and correctly classified instances thereby increasing the robustness of model performance. Furthermore, loss of interpretability in the model during prediction leads to insufficient prediction accuracy. Hence, an Associative classifier with Apriori Algorithm is introduced as a booster that integrates classification and association rule mining to build a strong classification model in which frequent items are obtained using Apriori Algorithm. Also, accurate prediction is provided by testing wrongly classified instances from the bagging phase using generated rules in an associative classifier. The proposed models are then simulated in Python platform and the results achieved high accuracy, ROC score, precision, specificity, F-measure, and recall.
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies