Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Exploring Deep Learning for Underwater Plastic Debris Detection and Monitoring

Tytuł:
Exploring Deep Learning for Underwater Plastic Debris Detection and Monitoring
Autorzy:
Khriss, Abdelaadim
Elmiad, Aissa Kerkour
Badaoui, Mohammed
Barkaoui, Alae-Eddine
Zarhloule, Yassine
Data publikacji:
2024
Słowa kluczowe:
marine debris monitoring
deep learning
YOLOv9
YOLOv8
faster rcnn
ssd
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
In this paper, a comparative evaluation of state-of-the-art deep learning models for object detection in underwater environments focusing on marine debris detection was presented. The performance of four prominent object detection models was investigated, including: Faster R-CNN, SSD, YOLOv8, and YOLOv9, using two different datasets: TrashCAN and DeepTrash. Through quantitative analysis, the accuracy, precision, recall, and mean average precision (mAP) of each model across different object classes and environmental conditions were evaluated. The obtained results show that YOLOv9 consistently outperforms the other models, demonstrating superior precision, recall, and mAP values on both datasets. Furthermore, the stability and convergence behavior of the models during training were analyzed, highlighting the excellent stability and adaptability of YOLOv9. The obtained results underscore the effectiveness of deep learning-based approaches in marine debris detection and highlight the potential of YOLOv9 as a robust solution for environmental monitoring and intervention efforts in underwater ecosystems.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies