Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Stewart platform simulation using the LabView environment

Tytuł:
Stewart platform simulation using the LabView environment
Autorzy:
Banaś, W.
Sękala, A.
Gwiazda, A.
Foit, K.
Kost, G.
Data publikacji:
2015
Słowa kluczowe:
Steward platform
modelling
LabVIEW
platforma Stewarta
modelowanie
LabView
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Purpose: Disabled persons, who wants to learn to drive a car, are often forced to buy own car and adapt it to their personal abilities. The other chance for them is to use the car simulator. Such simulator was built, but one of the most important issues was to make the experiences as realistic as possible. All parameters have been set experimentally and tested by many drivers. It was necessary to find a compromise between safety and reality. In order to protect the simulator from damages, it was necessary to build the computer model and to conduct the simulation virtually before setting up the parameters of the real simulator. Design/methodology/approach: In the paper is presented the method of modelling the Steward platform (which is the base of the car simulator) in LabView Robotics software. The application uses the CAD model of the platform and conducts digital simulation of its movements to show all possible positions of the simulator. The simulation tests also have been done earlier, conducted in the NX program, during the design process. These results are used as the reference for the current simulation in order to check the correctness of the LabView model. Findings: The digital model of the simulator allows analysing the Steward platform workspace with the high accuracy. The collision in the virtual world will not cause any damages, which could be possible in real tests. This method of verification shows also if there is possible to extend the platform’s workspace. Research limitations/implications: The variety of experiments concerning static, kinematic and dynamic parameters of the platform has been done using the virtual model. Such experiments are especially dangerous for real simulator, because of extreme values of parameters like velocity or acceleration. The real static tests should be performed slowly and hence there is time to react when the signs of damage appear, but during the real dynamic tests, the time for reaction is very short and it is easier to destroy the simulator. Practical implications: The virtual tests of system dynamics are divided into two stages. In the first one, the values of velocities and accelerations are set by the software in the motion parameter window. It is measured the impact on the driver. In the second stage it is used the virtual model of mechanical part of the simulator. The UDP protocol is used to communicate with the control system and obtain the motion parameters. Originality/value: The tests allow checking the real parameters of the simulator work. The hazards and improper parameter, which cannot be detected in real test, have been revealed. The results allow setting more proper dynamic parameters and ensuring the better usage of the simulator workspace.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies